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Abstract

Many machine learning problems lack strong convexity properties. Fortunately, recent studies have
revealed that first-order algorithms also enjoy linear convergences under various weaker regularity
conditions. While the relationship among different conditions for convex and smooth functions is
well understood, it is not the case for the nonsmooth setting. In this paper, we go beyond convex-
ity and smoothness, and clarify the connections among common regularity conditions (including
strong convexity, restricted secant inequality, subdifferential error bound, Polyak-Lojasiewic in-
equality, and quadratic growth) in the class of weakly convex functions. In addition, we present a
simple and modular proof for the linear convergence of the proximal point method (PPM) for con-
vex (possibly nonsmooth) optimization using these regularity conditions. The linear convergence
also holds when the subproblems of PPM are solved inexactly with a proper control of inexactness.
Keywords: Error bound, Polyak-ELojasiewic inequality, quadratic growth, proximal point method.

1. Introduction

Machine learning has shown impressive performance on a wide range of applications. Behind
these successes, (sub)gradient-based methods and their variants are the workhorse algorithms. Many
studies have investigated the theoretical foundations of these first-order iterative algorithms. For
smooth and/or convex cases, (sub)gradient methods are most well-understood (Nesterov, 2018). It is
well-known that the basic gradient descent algorithm achieves linear convergence for minimizing
smooth and strongly convex functions. However, strong convexity is a very strong assumption, and
many fundamental models in machine learning lack this good property (Agarwal et al., 2010).
Alternative regularity conditions that are weaker than strong convexity have been revealed in
the past. For example, gradient descent also converges linearly under Polyak-Lojasiewic inequality
or Restricted secant inequality (Polyak, 1963; Zhang and Yin, 2013; Karimi et al., 2016; Guille-
Escuret et al., 2022). These two conditions can even hold for nonconvex functions. The classical
bundle method converges linearly under quadratic growth for smooth convex functions (Diaz and
Grimmer, 2023). This linear convergence result has recently been extended for general semidefinite
optimization (a very broad class of conic programs) in Ding and Grimmer (2023); Liao et al. (2023).
While smooth and convex (but not strongly convex) problems cover a variety of applications, mod-
ern machine learning practice routinely deals with problems lacking both qualities (e.g., training
nonsmooth and nonconvex deep networks). Recent studies have further identified one amenable
problem classes: weakly convex (Davis and Drusvyatskiy, 2019). The class of problems includes all
convex functions, L-smooth functions, certain compositions of convex functions with smooth func-
tions, and many cost functions in modern machine learning (Drusvyatskiy and Davis, 2020; Atenas
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et al., 2023). For nonsmooth problems, it is known that subdifferential error bound (or metrically
subregular) or error bound for proximal gradient mapping is sufficient to ensure linear convergence
of proximal algorithms (Ye et al., 2021; Drusvyatskiy and Lewis, 2018). Very recently, Atenas et al.
(2023) also uses error bound properties to establish linear convergence for proximal-type methods.

While a range of weaker conditions ensure linear convergence of many first-order algorithms,
their relationship remains unclear, especially in the class of weakly convex functions. Recently, it
has been revealed that some regularity conditions (such as PL, error bound, and quadratic growth)
are equivalent (Drusvyatskiy and Lewis, 2018; Drusvyatskiy et al., 2021; Bolte et al., 2017; Karimi
etal., 2016; Ye et al., 2021; Zhu et al., 2023). However, many existing results require smooth and/or
convex settings; we postpone a detailed discussion of these results in Remark 1 after introducing rel-
evant notation and our main results. In this paper, we have two main contributions: 1) we first clarify
the relationship among common regularity conditions in the class of weakly convex functions (The-
orem 3.1); 2) we present a simple and modular proof for linear convergence of the classical proximal
point method (PPM) (Rockafellar, 1976b) under these regularity conditions (Theorem 4.2). These
linear convergence results hold for inexact PPM when controlling stopping criteria properly (The-
orem 5.3). We remark that our convergence results require weaker conditions with simpler proofs.
We expect their applications to sparse and large-scale conic optimization (Zheng et al., 2021).

The rest of this paper is structured as follows. Section 2 presents a motivation and revisits lin-

ear convergence of gradient descent. Section 3 presents the relationship among different regular-
ity conditions. Sections 4 and 5 focus on the (inexact) PPM and establishes the sublinear and linear
convergences. Section 6 presents three numerical experiments, and Section 7 concludes this paper.
Some extra discussions and technical proofs are provided in Appendices A to F.
Notation. We use R” to denote n-dimensional Euclidean space and R to denote the extended real
line, i.e., R := RU{+o00}. The notations (-, -) and || - || stand for standard inner product and £5 norm
in R™. For a closed set S C R", the distance of a point z € R" to S is defined as dist(z, S) :=
minyes ||z — y|| and the projection of x onto S is denoted as [Ig(r) = argmin, g ||z — yl|. The
symbol [f < v]:={x € R" | f(z) < v} denotes the v-sublevel set of f.

2. Motivation: Linear convergence of gradient descent algorithms

To motivate our discussion, consider a smooth convex optimization min, f(x), where f : R” — R
is a convex and L-smooth function, i.e., its gradient is L-Lipschitz satisfying |V f(z) — V f(y)|| <
Lijx —yl||, Yz, y € R™. Let S := argmin f(z) be the set of optimal solutions. Assume S # () and
denote f* = min, f(z). The standard gradient descent (GD) follows the update

Tpe1 = o — 6V f(2k), )
where t;, > 0 is the step size. A textbook result says that when choosing a constant step size t = %,

the GD iterates converge to f* with a sublinear rate (precisely, f(zy) — f* < Ldist?(zo, S)/(2k));
see e.g., Bubeck et al., 2015, Theorem 3.3. If the function f(x) is strongly convex, GD achieves a
global linear convergence (Bubeck et al., 2015, Theorem 3.10).

However, the assumption of strongly convexity is too strong. It is known that some alternative
weaker assumptions are already sufficient for linear convergences. We here introduce two notions:
restricted secant inequality (RSI) (Zhang and Yin, 2013), and Polyak-Lojasiewicz (PL) inequality
(Polyak, 1963). A smooth function f(z) satisfies RSI if there exists . > 0 such that

(Vf(x),x — s(a)) > pllz — Ts(@)]]” = p - dist*(x, ), Vo € R, @)
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and it satisfies the PL inequality if there exists 3 > 0 such that
1
SIVI@I = B(f(2) = ), Yo € R™, 3)

Note that both RSI (2) and PL (3) imply that any stationary point of f(z) is a global minimum.
However, they do not imply the uniqueness of stationary points or convexity of the function. One
can think that RSI (2) (resp. PL (3)) requires that the gradient V f(x) grows faster than that of
quadratic functions when moving away from the solution set .S (resp. the optimal value f*). Linear
convergence of GD under the PL inequality was first proved in Polyak (1963), and linear con-
vergence under RSI was discussed in Guille-Escuret et al., 2022, Proposition 1 and Zhang, 2020,
Proposition 1. We summarize a simple version below.

Theorem 2.1 (Linear convergence of GD) Consider min, f(x), where f is L-smooth (possibly
nonconvex) function. Suppose its solution set S is nonempty. If RSI (2) holds with ;n > 0 and PL
inequality (3) holds with 3 > 0, then the GD algorithm (1) with a constant stepsize ty, = % has a
global linear convergence rate for iterates and function values, i.e.,

dist(zy1, S) < wi - dist(zg, S), where w1 =+/1—p?/L? € (0,1), (4a)
fl@rpr) = f* <wo - (flxg) = f*), where wy = (L —2uLB + i?B)/L* € (0,1).  (4b)

Thanks to RSI (2) and PL inequality (3), the proof of Theorem 2.1 is very elegant and only takes
afew lines. We provide a simple proof and some additional discussions in Appendix B. In particular,
the RSI (2) leads to a quick proof of (4a), and the PL (3) allows for a simple proof of (4b). Indeed, it
is known that for L-smooth convex functions, the two conditions RSI (2) and PL (3) are equivalent
(cf. Karimi et al., 2016, Theorem 2). Some recent studies, such as Bolte et al. (2017); Necoara et al.
(2019); Zhang (2017), have explored the relationships among different regularity conditions for
linear convergences. A nice summary appeared in Karimi et al., 2016, Theorem 2, but it only works
in the context of L-smooth functions. In this paper, we aim to characterize the relationships among
different regularity conditions for nonsmooth and nonconvex functions (Section 3), and apply them
to derive simple and clean proofs for linear convergences of (inexact) proximal point methods for
convex (possibly nonsmooth) optimization (Sections 4 and 5).

3. Relationships between regularity conditions

In this section, we move away from convex and smooth functions and expand our view to the class
of weakly convex (potentially nonsmooth) functions. A function f : R® — R is called p-weakly
convex if the function f(x) + §||z||* is convex. The class of weakly convex functions is very rich:
it includes all convex functions, L-smooth functions, certain compositions of convex functions with
smooth functions, and many cost functions in modern machine learning applications; we refer in-
terested readers to Drusvyatskiy and Davis (2020); Atenas et al. (2023) for more details.

Let f(x) : R* — R be a proper, closed, p-weakly convex function. For this function class, gra-
dients may not always exist. We define the Fréchet subdifferential (see e.g., Li et al., 2020, Page 27):

Of(z) = {3 € R" |lim nf ) = fu(g)__xﬁw —2) s 0} .




LiAo DING ZHENG

If f(x) is convex, Fréchet subdifferential §f(x) is the same as the usual convex subdifferential
f(x) = df(x) = {s € R* | f(y) > f(z) + (s,y — x),Yy € R"}; if f(z) is smooth, Fréchet
subdifferential reduces to the usual gradient, i.e., & f(x) = {V f(x)}.

Let the optimal solution set of f(z) be S = argmin, f(z), and we assume S # (. Letv > 0
and consider the following five regularity conditions:

1. Strongly Convexity (SC): there exists a positive constant ps > 0 such that
f@) + gy —a)+ps-lly—=l* < fy), Va,yelf <[ +v]and g€ df(x). (SO
2. Restricted Secant Inequality (ESI): there exists a positive constant g, > 0 such that

- dist?(z, 8) < (g,z —Mg(x)), Vee|f<f*+v]and ge df(x). (RSI)

3. Error bound (EB)': there exists a constant /i, > 0 such that

dist(x, S) < pe - dist(0,f (x)), Ve [f < f*+v]. (EB)
4. Polyak-Lojasiewic (PL) inequality’: there exists a constant fp > 0 such that
pp - (F(x) = %) < dist®(0,0f(2)), Vo€ [f < f*+v]. (PL)
5. Quadratic Growth (QG): there exists a constant z1q > 0 such that

pq - dist?(z,8) < f(z) — f*, Vo e[f <+ (QG)

All the regularity conditions above are defined over a sublevel set [f < f* 4 v|. If v = 400, then
they are global. In particular, (SC) imposes a quadratic lower bound for every point in the sublevel
set. On the other hand, (RSI), (EB) and (PL) all require a certain growth of the subdifferential d f(x)
when moving away from its solution set .S or optimal value f*. It is easy to see that (RSI), (EB)
and (PL) all imply that every stationary point 0 € 9 f (x) in the sublevel set [f < f* + v] is a global
minimum (but they do not imply the uniqueness of stationary points). Finally, (QG) shows that f(x)
grows at least quadratically when moving away from the solution set .S.
Our first technical result summarizes the relationships among the five regularity conditions.

Theorem 3.1 Let f be a proper closed p-weakly convex function. The following relationship holds
(SC) — (RS — (EB) = (PL) — (QG). )
Furthermore, if any of the following two conditions is satisfied

* f(x) is convex (i.e., p=0),

1. Error bound is closely related to metrically subregularity at z* for 0 (Artacho and Geoffroy, 2008, Def. 2.3): there
exist a constant a > 0 and a set U containing =* such that dist(z, (3f) *(0)) < a - dist(0, df (x)), Vx € U.

2. To be consistent with the smooth case in Karimi et al. (2016), we call the property (PL) Polyak-Lojasiewic, which
is usually used for smooth functions. The property (PL) is actually a special case of Kurdyka-Lojasiewicz inequality
@' (f(z) — f*)dist(0,df (x)) > 1 with (s) = cs'/? and ¢ > 0.
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* the (QG) coefficient satisfies p1q > &,
then the following equivalence holds
(RSI) = (EB) = (PL) = (QQG). (6)

Theorem 3.1 includes Karimi et al., 2016, Theorem 2 and Zhang, 2020, Theorem 1 as a special
case, in which only L-smooth functions are considered. It is easy to see that all L-smooth functions
are also L-weakly convex. Even for smooth functions, Theorem 3.1 is more general than Karimi
et al., 2016, Theorem 2 in the sense that 1) we require no Lipschitz constant L for gradients to
ensure the equivalency among (EB), (PL), and (QG) in the convex case; 2) the condition pq > p/2
is new and does not mean that f(z) is convex (see Appendix C.2 for an example).

Our proof details for Theorem 3.1 are presented in Appendix C. The proof of Theorem 3.1 relies
heavily on the notion of slope defined in Drusvyatskiy et al. (2021), Ekeland’s variational principle
(Ekeland, 1974), and a technical result in Drusvyatskiy et al., 2015, Lemma 2.5. Alternative proofs
based subgradient flows (Bolte et al., 2017) are also possible. Indeed, one key step in the proof of
Karimi et al., 2016, Theorem 2 is based on gradient flows for smooth functions, which is as a special
case of subgradient flows for nonsmooth cases.

Remark 1 The regularity conditions (EB), (QG) and (PL) have been discussed for different func-
tion classes in the literature. For the smooth case, we refer to Karimi et al., 2016, Theorem 2 for a
nice summary. For nonsmooth convex functions, the equivalency between (EB) and (QG) has been
recognized in Drusvyatskiy and Lewis, 2018, Theorem 3.3 and Artacho and Geoffroy, 2008, Theo-
rem 3.3, and the equivalency between (PL) and (QG) is established in Bolte et al., 2017, Theorem
5. Thus, (EB), (PL), and (QQG) are equivalent for the class of nonsmooth convex functions (Ye et al.,
2021, Proposition 2); also see Zhu et al. (2023) for a recent discussion. Our Theorem 3.1 extends
these results to p-weakly convex functions. The most closely related work is Drusvyatskiy et al.
(2021) which focuses on nonsmooth optimization using taylor-like models. Indeed, we specialize
the proof in Drusvyatskiy et al., 2021, Theo. 3.7, Prop. 3.8, and Coro. 5.7 in our setting and prove
the relationship in (5) and (6) directly using the slope technique. We note that the implication from
(QG) to (EB)/A(PL) is not true in general. Yet, with one of the two conditions in Theorem 3.1, all four
regularity conditions (RSI), (EB), (PL) and (QG) are equivalent. ]

We conclude this section with a few simple instances. In principle, all the five properties in
Theorem 3.1 are generalizations of quadratic functions to non-quadratic, nonconvex, and even non-
smooth cases. For illustration, let us first consider the simplest quadratic function f(z) = 22, which
is convex and differentiable. It is clear that O f (z) = {2z} and S = {0}. It is also immediate to
verify that (SC) holds with 0 < ps < 1, (RSI) holds with 0 < p, < 2, (EB) holds with pe > 1/2,
(PL) holds with 0 < pu, < 4, and (QG) holds with 0 < pq < 1. Consider another simple convex
function f(z) = 2?,if |z| < 1, and f(z) = 22? + L otherwise. All the five properties hold for
this function, but it is not L-smooth globally. Let us move away from convex functions, and con-
sider f(z) = x? + 6sin?(x). It is clear that this function satisfies (QG) globally, however, there
exist suboptimal stationary points and consequently (EB) and (PL) do not hold globally. Thus, the
relationship (5) is strict, and (QG) is more general than the other conditions. Finally, we consider a
p-weakly convex function with a QG constant pq > 5: f(z) = —z* + 1if -1 < # < —0.5, and
f(z) = 3(x +1)? otherwise. The function is not convex but 2-weakly convex with the QG constant
ftq = 3 > 2/2 = 1. In this case, Theorem 3.1 guarantees that (RSI), (EB) and (PL) also hold (see
Appendix C.2 and Figure 2 for additional details in the appendix).
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4. Proximal point method for convex optimization

In this section, we will utilize the regularity conditions in Section 3 to derive fast linear convergence
guarantees of the classical proximal point method (PPM) (Rockafellar, 1976a) for convex (poten-
tially nonsmooth) optimization. PPM is a conceptually simple algorithm, which has been histori-
cally used for guiding algorithm design and analysis, such as proximal bundle methods (Lemarechal
etal., 1981), augmented Lagrangian methods (Rockafellar, 1976a). It has recently found increasing
applications in modern machine learning; see Drusvyatskiy (2017).

4.1. Proximal point method

Consider the optimization problem

f* = min f(z), ™

where f : R” — R is a proper closed convex function. Note that (7) is also an abstract model for
constrained optimization since given a closed convex set X, we can define f(z) = f(x) if z € X,
otherwise f(z) = co. Let S = argmin,, f(z). We define the proximal mapping as

. 1
prox,, f(:n) :=argmin f(z)+ — ||z — ackH2 , (8)
’ TER™ 2a

where o > (. Starting with any initial point x(, the PPM generates a sequence of points as follows
Tgy1 = prox,, f(ox), k=0,1,2,... )

where {cy, } >0 is a sequence of positive real numbers. The quadratic term in (8) makes the objective
function strongly convex and always admits a unique solution. The iterates (9) are thus well-defined.

The convergence of PPM (9) for (nonsmooth) convex optimization has been studied since 1970s
(Rockafellar, 1976b). The sublinear convergence is relatively easy to establish, and many different
assumptions exist for linear convergences of (9); see Rockafellar (1976b); Luque (1984); Leventhal
(2009); Cui et al. (2016); Drusvyatskiy and Lewis (2018). However, as we will highlight later, some
assumptions are restrictive and the corresponding proofs are sophisticated and nontransparent. We
aim to provide simple and clean proofs under the general regularity conditions in Section 3.

4.2. (Sub)linear convergences of PPM

Under a very general setup, the PPM (9) converges at a sublinear rate for cost value gaps, and the
iterates converge asymptotically, as summarized in Theorem 4.1. This result is classical (Giiler,
1991, Theorem 2.1), and a new bound with a constant 4 is also available in Taylor et al., 2017,
Theorem 4.1 using the performance estimation technique.

Theorem 4.1 (Sublinear convergence (Giiler, 1991, Theorem 2.1)) Let f:R™ — R be a proper
closed convex function, and S # (). Then, the iterates (9) with a positive sequence {c} >0 satisfy

Fla) — £+ < dist* (0, 5) /(22150 ). (10)

If we further have limy_, Zf:_ol ¢y = 00, the iterates converge to an optimal solution X asymptot-
ically, i.e., limy_ oo T, = T, where T € S.
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The proof of (10) is immediate from a telescope sum via the following one-step improvement:
20 (f (1) = F(2) < llww — 2| = lopsr — 2™, Ve >0,2" €8 (D)

This fact (11) is not difficult to establish. For completeness, we provide proof details in Appendix D.
Note that choosing any constant step size ¢ = ¢ > 0 in (10) directly implies the common sublinear
rate O(1/k). In Theorem 4.1, f(z) does not need to be L-smooth, and it can also be nonsmooth.
Thus, the guarantees in Theorem 4.1 are much stronger than those by (sub)gradient methods. This
is because the proximal mapping (8) is a stronger oracle than simple (sub)gradient updates.

Similar to GD in Section 2, when f(x) satisfies additional regularity conditions, the PPM enjoys
linear convergence. Our next main technical result establishes linear convergences of the PPM under
the general regularity conditions in Theorem 3.1.

Theorem 4.2 (Linear convergence) Let f:R"™ —R be a proper closed convex function, and S #
(). Suppose f satisfies (PL) (or (EB), (RSI), (QG)) over the sublevel set [f < f* + v]. Then, for all
k > kg steps, the iterates (9) with a positive sequence {cy } >0 enjoy linear convergence rates, i.e.,

f(@rr1) = <wi- (f(2r) = f9), (12a)
dist(zgy1,5) < O - dist(xg, S), (12b)
where the constants are
2 1 1 dist?(2°, S)

Wi <1, 0. = min <1, ky=

~ 2umingsocg

2+ ppcy \/QCkuq-i-l’\/Mg/ci_’_l
Proof The sublinear convergence in Theorem 4.1 ensures that the iterate xy, reaches [f < f* + 1]
after at most ky iterations. Once xj, is within [f < f* + v], all the properties (EB), (PL), (RSI), and
(QG) are equivalent by Theorem 3.1. For the analysis below, we assume xj, € [f < f* + v].
We next show that (PL) gives a simple proof of (12a), and (QG) together with (EB) leads to a
clean proof of (12b). Recall that the optimality condition of (9) directly implies

—(Tke1 —xp)/ck € Of (xpa1). (13)
Then, the following inequalities hold

(a)

Q ©
J@x) = flanen) 2 5l — el 2 Tdist®(0,0f (@ri1)) 2 a2 (Flane) = 1), (14)

1
2
where (a) applies the fact that xy, is a suboptimal solution to (9), (b) comes from the optimality (13),
and (c) applies (PL). Re-arranging and subtracting f* from both sides of (14) lead to the desired
linear convergence result in (12a).

We next use (QG) to prove (12b) with coefficient 6, < 1/, /2cjiq + 1. By definition, we have

f(g(zy)) = f*, and |Ig(xy) — k) = dist?(zy, S).

Since f(x) + ﬁ”x — x3||? is 1/cy, strongly convex, its first-order lower bound at 1 is

1 1
F o= Ts(ar) = 2x)|* = f(s(2x)) + 5 —dist® (s, S)
2¢y, 2cp (15)

1 1
> f(@rs1) + = orr1 — zpl|? + (0, Ms(zg) — 2p41) + = | Ts (@) — 2]
2¢y, 2cg

7
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where we also applied the fact that z;; minimizes (9) so 0 is a subgradient. From (15), we drop
the positive term ||z 1 — 7 ||? and use the fact that | TLs(xy,) — 71 1] > dist(xs41, S), leading to

1 1
5= f(zpg) + ——dist?(zx, S) > —dist?(zp41, 5).
2cp 2cp
Combining this inequality with (QG) and simple re-arranging leads to the desired linear rate
dist?(vg11,S) < 1/y/2¢kpq + 1 - dist? (24, S).

Simple arguments based on (EB) can establish (12b) with coefficient 6, < 1/4/u2/ c% + 1. We
provide some details in Appendix D.2. This completes the proof. |

Two nice features of Theorem 4.2 are 1) the simplicity of its proofs and 2) the generality of
its conditions. Indeed, the proof of (12a) is very simple via (PL), while the proof of (12b) is also
clean via (QG) and (EB), which are simpler than typical proofs. In addition, the regularity condi-
tions are weaker than Rockafellar (1976b); Luque (1984). Linear convergence for dist(zy, S) was
first established in Rockafellar (1976b) with one restrictive assumptions: the inverse of the subdif-
ferential (Of)~! is locally Lipschitz at 0. This assumption in turn implies the optimal solution is
unique, i.e., S is a singleton. The uniqueness assumption is lifted in Luque (1984), which allows
an unbounded solution set. More recently, this assumption is further relaxed as 0 f being metrically
subregular in Cui et al. (2016); Leventhal (2009). It is known that for convex functions, 0 f is metri-
cally subregular if and only if f(x) satisfies quadratic growth (cf. Theorem 3.1). Indeed, our proof
in Theorem 4.2 is based on quadratic growth, which is a more intuitive, geometric property. Our
main idea in the proof above is motivated by a recent result for the linear convergence of the spectral
bundle method in Ding and Grimmer (2023).

5. Inexact proximal point method (iPPM) and its convergences

In Section 4, each subproblem (8) is solved exactly. This may not be practical since one still needs
an iterative solver to solve (8), where stopping criteria naturally introduce errors. We here discuss an
inexact version of PPM (iPPM, Rockafellar, 1976b) where the subproblem (9) is solved inexactly.
The regularity conditions in Theorem 3.1 also allow us to establish linear convergences of iPPM.

5.1. iPPM and stopping criteria

We replace the exact update (9) with an inexact update

Tprl A proxck’f(:vk). (16)

Two classical criteria suggested in Rockafellar’s seminal work (Rockafellar, 1976b) are

k1 — prox,, p(ze)ll < ek,  Dopiger < oo, (A)

k41 — prox,, (@e)ll < llzrer — zll,  Dop2q 0k < oo (B)

The inexact update (16) with (A) or (B) is called iPPM. The two criteria are not directly imple-
mentable as the value of prox,., ((z) is unknown. As discussed in Rockafellar, 1976b, Proposition
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3, two implementable alternatives that imply (A) and (B), respectively, are

diSt(O,Hk(xk_H)) < ek/ck, ZEO:O € < 00, (A
dist(0, Hy(z+1)) < (Or/ci)llerrr — znll, D28l 0k < 00, (B")

where Hy,(z) = Of (x) + (x — x1)/cy is the subdifferential of f(x) + ||z — x|/ (2¢ck) (since f(x)
is convex by assumption). Note that (A) and (B) only require the inexact update x; 1 to stay close
enough to prox,, f(:ck) with respect to the Euclidean distance, but they do not require the inexact
update x4 to be within the domain of f, i.e., f(zr,1) might be infinity. However, the stopping
criteria (A’) and (B’) require that 1 is in the domain of f.

5.2. (Sub)linear convergences of iPPM

The seminal work (Rockafellar, 1976b) has established the asymptotic convergence of iterates for
iPPM under a general setup. We state the results below whose proof is technically invovled.

Theorem 5.1 (Asymptotic convergence of iterates (Rockafellar, 1976b, Theo. 1)) Let f:R" —
R be a proper closed convex function. Consider any sequence {x }i>0 generated by (16) under (A)
with a positive sequence {cy,} >0 bounded away from zero. Then, we have 1) the sequence {x } >0
is bounded if and only if there exists a solution to 0 € Of(z), i.e., S # 0; 2) if S # 0, the whole

sequence {x, } >0 converges to an optimal point x, € S asymptotically, i.e., im z}, = Too.

We next establish a sublinear convergence of iPPM for cost value gaps. Our simple proof is
based on the boundedness of the iterates from Theorem 5.1 and a recent idea in Lu and Yang, 2023,
Theorem 3. We provide some details in Appendix E.

Theorem 5.2 (Sublinear convergence of iPPM) Let f:R" — R be a proper closed convex func-

tion, and S # (. The iterates (16) under (A") with a positive sequence {ci } ;>0 bounded away from
zero converges to t* € S asymptotically, and the cost value gaps converge as

dist?(z9, S) + 2D S0 ¢;

min_ f(z;) — f* < ( ) - 205

where D is the diameter of iterates {x}} which is bounded.

i

Note that Theorems 5.1 and 5.2 can be viewed as the convergence counterpart for iPPM of The-
orem 4.1 with two major differences: 1) Theorem 5.2 deals with the best iterate, unlike the last
iterate in Theorem 4.1 (the guarantee for the average &, = % 2?21 x; or weighted average 7, =

(Z?;g cixit1)/ (Zf;é ¢;j) is also straightforward; see Remark 2 in the appendix); 2) the conver-
gence of cost values in Theorem 5.2 relies on the boundedness of iterates in Theorem 5.1 whose
proof is technically involved from Rockafellar, 1976b, Theorem 1, while the convergence of iterates
of exact PPM is established from the sublinear convergence of cost values in Theorem 4.1.

We now introduce our final technical result, which is the counterpart of Theorem 4.2.

Theorem 5.3 (Linear convergence of iPPM) Let f:R"™ — R be a proper closed convex function,
and S # (. Suppose f satisfies (EB) (or (QG), (PL)) over the sublevel set [f < f*+v]. Let {x)} be
any sequence generated by iPPM (16) under (A) and (B) with parameters {Ck}kzo bounded away
from zero. There exists a nonnegative 0y, < 1 and a large k > 0 such that for all k > k, we have

01 + 26}

dist(zx41,S) < Ordist(zy, S), where 0y, = -
— Ok

and lim 0, = 0, < 1. 17)
k—o0
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Proof Thanks to (A), the asymptotic convergence of {z}} is guaranteed by Theorem 5.1. Thus,
there exists a k1 such that the iterate enters the QG region, i.e., (QG) holds. Theorem 4.2 implies

dist(prox%f(a:k), S) < Ordist(z, S), Vk > ki, (18)
where 6, = 1/,/2ckpq + 1 < 1. On the other hand, thanks to (B), there exists a k2 > 0 such that
(1 — dg)dist(xg41,5) < 20rdist(zg, S) + dist(prox%f(xk), S), Vk > ko. (19)

This inequality (19) quantifies the quality between the next iterate xy,; and the true proximal point
prox,, f(a:k), first appeared in Luque, 1984, Equation 2.7. We provide some details of (19) in
Appendix E.2. Choosing k > k = max{k, k2} and combining (18) with (19) directly leads to the
desired rate (17). This completes the proof. |

In Theorem 5.3, criterion (A) is to guarantee that the iterates can reach the QG region (cf. the
asymptotic convergence from Theorem 5.1). If (QG) holds globally (i.e., ¥ = o), the same linear
convergence result holds with only (B). Note that the convergence proof in Theorem 5.3 is very
modular. Indeed, thanks to the regularity conditions (i.e., (QG)) in Theorem 3.1, our proof is simpler
and less conservative than typical proofs in the literature; see the discussions at the end of Section 4.

6. Applications

In this section, we consider three different applications of convex optimization in machine learning
and signal processing: linear support vector machine (SVM) (Zhang and Lin (2015)), lasso (Tibshi-
rani (1996)), and elastic-net (Zou and Hastie (2005)) respectively. For each application, we run the
PPM on three different data sets. These problems satisfy the regularity conditions in Theorem 4.2.
The numerical results are shown in Figure 1, which confirms the fast linear convergence of the PPM.
The details of the data set and the choices of parameters can be found in Appendix F.

0
10
—o—SVM1 —o—LASSO1 —o—ELASTIC1
x —6—SVM2 x —6—LASS02 x —6—ELASTIC2
A —6—SVM3 Ny —o—LASSO3 Z —o—ELASTIC3
= &~ 100 100
\ | |
10 ) )
= = =
) 10 10°°
3 )
0 5 10 0 5 10 0 5 10
Iteration Iteration Iteration

Figure 1: Linear convergences of cost value gaps for linear SVM (left), lasso (middle), and elastic-net (right).

7. Conclusion

In this paper, we have established the relationship between different favorite regularity conditions
under the class of p-weakly convex functions. This result is beneficial in analysis and design of
various first-order algorithm. We have also presented simple and clear proofs for the (inexact)
PPM which makes the analysis of the (inexact) PPM more accessible to new readers. We believe
these results will facilitate algorithm development in nonsmooth optimization. We are particularly
interested in further applications in large-scale conic optimization (Zheng et al., 2021).

10
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Appendix A. Subdifferential characterization of weakly convex functions

For self-completeness, we review a useful subdifferential characterization of weakly convex func-
tions. Recall that R denotes the extended real line, i.e., R := R U {£o00}.

We say that a function f : R® — R is proper if f(z) < oo for at least one z € R™ and
—oo < f(x) for all z € R"™. We say that a function f : R® — TR is closed if the epigraph
epif : {(z,a) e R" x R| f(z) < a} is closed.

Definition 1 For a closed function f : R" — R, we define the Fréchet subdifferential as

Of (z) = {s e R" | liminf LW =@ — sy =) o 0}.

y—e ly — ||

Definition 2 A function f : R™ — R is called p-weakly convex if f(x) + 5||z||? is convex.

For this class of p-weakly convex functions, the Fréchet subdifferential always exists for any point
z € R™. This is because the Fréchet subdifferential is the same as the Clarke subdifferential for p-
weakly convex functions and the Clarke subdifferential always exists (Li et al., 2020, Section 3 and
fact 5). The class of p-weakly convex functions also has the following nice characterizations. These
characterizations offer favorable properties for p-weakly convex functions, which can be viewed as
extensions from strongly convex functions.

Lemma 1 (Subdifferential characterization (Davis and Drusvyatskiy, 2019, Lemma 2.1)) The fol-
lowing statements are equivalent for any closed function f(x).

* The function f is p-weakly convex.

» The approximate secant inequality holds:

A(l— A
F0w+ (1= Ny) <A@+ (1= N) + P ey veyer e o)
» The subgradient inequality holds:
F) 2 J@)+ wy—a) = flly— 2’ VeyeR vedf@. Qo)

o The subdifferential map is hypomonotone:
(v—wz—y) > —plz—yl’, Va,yeR"vedf(x), andw € I (y).
If f is C2-smooth, then the four properties above are all equivalent to
V2f(x) = —pI,Vz € R"™.

The subgradient inequality (20) is particularly useful in our proof for Theorem 3.1 in Appendix C.
We will repeatedly apply (20) to establish the connection between subdifferential and cost value gap.

14
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Appendix B. Proof of Theorem 2.1

Recall that we say a differentialable function f : R™ — R is L-smooth if it satisfies
IVi(@) =Vl < Lz -y, Ve,yeR™ 2D

A differentialable L-smooth function f also satisfy the following useful inequalities

F) < F(@) + (VT @)y — ) + o lly — 2l Yoy <R @2)

Assume that RSI (2) holds with constant p > 0. We first note that i+ < L. Indeed, this can be seen
from the following fact: let z € R™, x ¢ S, we have

pllz — s (2)|]> < (Vf(z),z —Og(x)) = (Vf(z) = Vi(s(z)), v — g(x))
< L|jx — g ()|,

where the first inequality uses RSI (2), and the last inequality applies Cauchy-Schwarz and (21).

Recall that for a closed set S C R", we denote the distance of a point z € R" to S as
dist(z, S) := minyes ||z — yl| and the projection of z onto S as [I5(z) = argmin g ||z — y||. In
the following, S denotes the set of minimizers of f(x). We first the following inequality in terms of
the distance to the solution set

dist*(xp41,S) < |2k — .V f () — Mg () ||? (23a)
= o — Mg (k) |* = 2t (V (), 2 — s(x)) + IV (@) (23b)
< dist?(zy, S) — 2tpudist? (xy, S) + t7 L2dist?(xg, S) (23¢)
= (1 = 2tpp + 7 L?) dist® (zy, S), (23d)

where (23a) plugs in definition of zj; and uses the fact dist(zx11,5) = ||xpr1 — Hg(zps1)] <
|lxg+1 — Hg(x)||, (23b) simply expends the square, and (23c) uses (2) to upper bound the inner
product term and applies the L-smoothness inequality (21) to ||V f(z)|| = ||V f(zx) =V f (s (z))|]
< L||zg — Ig(zy)|| (noting that V f(ILs(zx)) = 0).

On the other hand, suppose the PL property (3) holds with constant 5 > 0. First, we have

Flownn) = Fae) < (V7 mien — 2+ 5l — ol

2
= —t3, (V f(z1), V) + %HW(%)H2

_ L2
= () 19 sl

where the first inequality applies (22). If the step size t;, is chosen such that 0 < ¢, < 2, then

>
_ 2
% < 0. Then, applying PL (3) to the above inequality and subtracting f* from both sides,

we arrive at the linear convergence in the cost value gap
Flaran) = F* < (L4 (=2t + LE§) B)(f () — 7). (24)

15



LiAo DING ZHENG

To summarize, if we choose the step size t; such that the constants in (23d) and (24) less
than one (equivalently, 0 < 1 — 2¢;u + tiL2 < land 0 < t < %), linear convergence for

both the distance and the cost value gap is guaranteed. In particular, choosing t;, = % we have
1 —2tk,u+tiL2 =1-F <landty < # < % as u < L, leading to the desired linear convergence:
diStQ(karh S) < (1 - :U’/L)dIStQ(xkv S)v
L3 4 (—2uL + p?)B

f(@ps1) — fF < 73 (f(zk) = 7).
Note that if (3) holds with 3 > 0, then 5 < ﬁ Otherwise, the above cost value decrease
would contradict with the fact that the cost value gap is always nonnegative. This choice of step

size ty, = % is not new, which was used in (Guille-Escuret et al., 2022, Proposition 1) or implicitly

(Zhang, 2020, Proposition 1).

Remark 1 Note that Theorem 2.1 is consistent with the linear convergence result in (Karimi et al.,
2016, Theorem 1) since the step size t, = % also satisfies 0 < t, < % Despite choosing ti, = %
renders a cleaner reduction constant (1 — %) in (Karimi et al., 2016, Theorem 1), it is unclear if
the distance also converges linearly under this stepsize choice (i.e., it is not guaranteed that tj, = %
leads to the constant 1 — 2tpp + t2L% =2 — 28 < 1),

Appendix C. Details of Theorem 3.1
C.1. Proofs of Theorem 3.1

Our proofs are adapted from the techniques in (Drusvyatskiy et al., 2021, Theorem 3.7, Proposition
3.8, and Corollary 5.7). We first start by introducing the necessary ingredients to build up the proofs.
We define the notion of slope as (Drusvyatskiy et al., 2021, Section 2).

Definition 3 (Slope) Let X' be a complete metric space with the metric d(-,-). Consider a closed
function f : X — R and a point T with f(Z) finite. The slope of f at T is its maximal instantaneous
rate of decrease:

Vf|(Z) := li AASZANTASZ2
IV f|(z) im sup @.9)

where we use the notation v = max{0,7}.

If the function f is smooth on a Euclidean space, the slope |V f|(z) is simply the norm of the
gradient ||V f(Z)||. If f(x) is convex, the slope |V f|(Z) is equivalent to the length of the minimal
norm element in the subdifferential, i.e., |V f|(Z) = dist(0,9f(z)). If it is p-weakly convex, the
slope |V f|(Z) is the same as the length of the minimal element in the Fréchet subdifferential, i.e.,
|V f|(z) = dist(0,0f(z)) (see Ioffe (2017); Drusvyatskiy (2013) for more details). We summarize
these useful properties into a lemma below:

Lemma 2 Consider a closed function f : R* — R and a point ¥ € R™ with f(Z) finite. The
following statements for the slope hold.

1. If f is smooth, then |V f|(Z) = ||V f(Z)

>
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2. If f is convex, then |V f|(z) = dist(0,0f(Z));
3. If f is p-weakly convex, then |V f|(Z) = dist(0, df(Z)).

Proof We note that the following inequality holds for any Z € R™ with a finite function value f(Z)
(Drusvyatskiy et al., 2021, Section 2)

IV f](z) < dist(0,0f(z)). (25)

As the slope lacks basic lower-semicontinuity properties, it is important to define the /imiting slope

IVf|(Z):= liminf )|Vf|(:n). (26)

=T, f(x)—=f(T
The result from (Ioffe, 2017, Proposition 8.5) has shown that
IV f1(Z) = dist(0,0f(2)), 27

where Of(Z) denotes the limiting subdifferential (defined in Equation 18 Li et al. (2020)) of f
evaluated at . Then we claim that for the class of functions whose Fréchet subdifferential and
limiting subdifferential coincide, we have |V f|(z) = dist(0,d(z)). Indeed, suppose df (&) =
df(z), using (27) and (25), we have

[V£I(z) = dist(0,0f(z)) = dist(0,0f(z)) > |V f](2).

On the other hand, |V f|(Z) < |Vf|(Z) always holds true by defintion (26). Thus, |V f|(Z) =
dist(0,df(z)). One sufficient condition for Fréchet subdifferential and limiting subdifferential
being the same (i.e., Of(Z) = Of(Z)) is f being subdifferentially regular at Z (Li et al., 2020, Def-
inition 2 and fact 5). For smooth, convex, and weakly convex functions, they are subdifferentially
regular at every point (Li et al., 2020, Page 24). Thus, the result follows. |

We then introduce a key result from (Drusvyatskiy et al., 2015, Lemma 2.5) that will help us
estimate the distance to the optimal solution set.

Theorem 2 (Lemma 2.5 Drusvyatskiy et al. (2015)) Let f : R® — R be a proper closed func-
tion. Suppose for some point x € dom(f), there are constants o« < f(x) andr > 0, K > 0 such
that f(x) —a < Kr and

IV fl(u) >r, Vu € [a< f < f(z)] N (dist(u,z) < K).
Then the sublevel set [f < « is nonempty and dist(z, [f < o]) < (f(z) — a)/r.
Note that if « = f* in Theorem 2, we can estimate the distance dist(z, [f = f*]).

Theorem 3 (Ekeland’s variational principle Ekeland (1974)) Let f : R® — R be a proper
closed function. Suppose that for some ¢ > 0 and z € [f < inf f + €]. Then for any p > 0
there exists y € R™ such that

dist(z,y) < €/p, (28a)
fly) < f(2), (28b)
f(x) +p-dist(z,y) > f(y), Vo e R"/{y}. (28¢)
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Note that (28a) means that the distance between y and z is bounded, (28b) tells us that y is also
in the sublevel set, and (28c) shows that y uniquely minimizes the function f(-) + p - dist(-, y).
Following from the definition of slope (Definition 3), one immediate consequence of Theorem 3 is
that the slope of y is also bounded by p as

V1) = timsup LB —S@NT o distey)

29
Ty dist(z, y) vy dist(z,y) )

We are ready to prove the main result in Theorem 3.1. In particular, Theorems 2 and 3 will play
an important role in the proof of (PL) = (EB) = (QG).
Poof of Theorem 3.1 Recall that S denotes the set of minimizers of f(z), which is non-empty.

* (SC) = (RSI): Suppose f satisfies (SC) with constant ys > 0. Forany z € [f < f* + v] and
g € 0f(x), welety = IIg(z). It follows that

f(@) + (g, g(x) — z) + ps - dist?(z, S) < f(g(x))
= s - dist?(z, 5) < f(Ig(x)) — f(z) + (g, — s())
< (g,z —g(x)),

where the last inequality comes from the fact that f(IIg(x)) — f(z) < 0. This inequality also
implies that p; > ps.

* (RSI) = (EB): Suppose f satisfies (RSI) with constant y, > 0. Let x € [f < f*+v]andg
be the minimal norm element in 0 f (x). Then, by definition of (RSI), we have

(g,x —TIg(x)) > p, - dist?(z, S).
Applying Cauchy-Schwarz on the left side yields

dist(0,df (z)) > py - dist(z, S).
This also implies that pe < i

* (EB) = (PL): Suppose f satisfies (EB) with constant y, > 0. From the subdifferential
property for p-weakly convex function (20), we have

p
F* = f@) + (v, s(@) = 2) = 5[ s(2) — =],
where v € §f(x). Choosing v as the minimal norm element of Jf (2), we deduce

F(z) — f* < dist(0, 8f (x))dist(z, S) + gdistQ(:c, S)

2
< e - dist?(0, f (z)) + pge dist2(0, 8 f (z))
2 2 A
- <‘”2Tp“) dist2(0, O f (x)).
Dividing both sides by (2ue + pu?)/2 gets the desired constant.
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* (PL) = (EB): Suppose f satisfies (PL) with constant y, > 0. As f is p-weakly convex,
applying Lemma 2 on (PL) shows that

V() > pp - (f(z) — f), Vo el[f< f+v] (30)

Let g(x) = (f(x) — f*)'/2. Note that from (30) and the chain rule of limiting subdifferential
(Penot, 2013, Proposition 6.19), forall Z € [0 < g < 1/v], we have the following inequalities

Vel(z) = 9gl() 2 dist(0.99(2) = dist(0, £(£(2) )20 (@)
D dist(0, 5(£(2) ~ £)7204(2)) = L@ ~ ) 2dist(0,05(2)
QU@ - )
2@ - T ) - )
i

where (a) follows the definition (26), (b) comes from (27), (c¢) uses the fact that g C
$(f(@) - f*)"120f (%) (Penot, 2013, Proposition 6.19), (d) uses the fact that f is weakly

convex so it is subdifferentially regular at every point, implying df(z) = df(z) (Li et al.,
2020, Page 24), (e) uses Lemma 2, and ( f) comes from (30).

Fix a point 2 € [0 < g < /v]. We choose K > 9(33)\/% It is obvious we have

|Vg|(u) > Vi Vu e [0 < g <g(x)n (dist(u,z) < K),

2 Y
g(z) < K~ :p.
Choosing r = \/ST”", a = 01in Theorem 2, we have the following bounds
2 2
dist(z, §) = dist(z, [9 < 0]) € ——g(2) = ——(f(x) - f)"/”
Vi i
2 2 A
< —|Vfl(z) = —dist(0,0f(x)), Vzelf <[+l
Hp Hp

where the first inequality is from Theorem 2, the second inequality comes from (30), and the
third inequality applies Lemma 2. This completes the proof of (PL) = (EB).

* (EB) = (QG): Suppose f satisfies (EB) with p, > 0. Fixing any z € [f* < f < f* 4+ v], we
have x € [f* < f < f*+¢| withe = f(x) — f*. Choosing p = \/€/ e, Theorem 3 and (29)
ensure that there exists a y such that y € [f < f* + €] and |V f|(y) < p. Thus,

(a)
pep > pie - [V f1(y) = dist(y, S)
(b
> dist(x, S) — dist(z, )

©
> dist(x, S) —€/p,

19



LiAo DING ZHENG

where (a) uses Lemma 2 (i.e., we have |V f|(y) = dist(0,df(y)) for weakly convex func-
tions) and (EB), (b) applies the triangle inequality for a point to a set, and (c¢) comes from

(28a). Substituting e = f(z) — f* and p = i and rearranging the above inequality yields

2/ (f () — f*)Y2 > dist(z, ).
Squaring both sides completes the proof of (EB) = (QG).

Summarizing the relationship above leads to the first part of Theorem 3.1 in (5). We now prove
the second part in (6).

* (QG) with f being convex or jiq > % = (RSI): We prove the later as the former follows the
exact argument by setting p = 0 (which means that f is convex).

Letz € [f < f*+v]and g € §f(x). From the assumption of (QG) and the property of
subgradient of weakly convex function in (20), we have

fiq - dist?(z,S) < f(z) — f* < (9,2 — Hg(x)) + gdistz(a;, S).
Rearranging terms yields

Qm—g)dmaﬁsy;@x—ng@y

This completes our proof of Theorem 3.1.

C.2. An example of p-weakly convex function with ;i > £

We give a detailed examination of the example showing that even if (QG) holds with the constant
Mg > g, the function is still nonconvex while all the (RSI), (PL), (EB), and (QG) all hold true.
Consider the function
=2 +1 i —1<a2 <05,
fa) = 3(x+1)% otherwise.
It can be verified that the function is not convex (due to the part —1 < =z < —0.5) but 2-weakly

convex with a unique minimizer z* = —1 and f* = 0. See Figure 2 for an illustration of these
properties. The Fréchet subdifferential can be calculated as

9 if —1<x<—-05,
Of(x) = 6(z+1) ifz<-—lorz>—0.5,
[0,2] ifo=—1,

[1,3]  ifz=—05.

The length of the minimal element is then

|2x| it —1<z<-0.5,
N 6 1 ifx < —1 > —0.5,
dist(0,0f (@) = § 10T DI e < Lo
0 ife =—1,
1 if x = —0.5.

One can see that (QG) holds for 0 < pg < 3, (EB) holds for p, > 1/2, and (PL) holds for
0<pp<4 /3. These can also be observed in Figure 2.
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3 6 35
—f(=@) Dist(z, S) —f(@)
2.5 ——2.5- Dist(z, S) 5 Dist(0, O () 30 Dist?(0, 8 (x))
— f(z) +a?
9 4 25
20
1.5 3
15
1 — 2
10
0.5 1 5
0 0 0 >‘/
15 1 0.5 0 1.5 1 0.5 0 1.5 -1 0.5 0
T T T

Figure 2: A nonconvex function with f* = 0 that satisfies the equivalency (RSI) = (EB) = (PL) = (QG).
Left: the function f (blue line) is p-weakly convex (confirmed by the green line), and also satisfies (QG) with
fiq = 2.5 (confirmed by the red line); Middle: f satisfies (EB) as the value of dist(0,df(x)) (yellow curve)
is lower bounded by dist(z, S) (purple curve). Right: f satisfies (PL) as the value of dist?(0,df(z)) (red
curve) is lower bounded by f(z) (blue curve).

Appendix D. Convergence proofs of the PPM in Section 4.2

D.1. Proof for Theorem 4.1

One important step to prove the sublinear convergence Theorem 4.1 is to establish the one-step
improvement (11). Specifically, from the optimality condition of (9), the iterate x; satisfies

—1/cp(zp41 — xx) € Of (Tpy1)- (31)

By the definition of subdifferential for convex functions, we know

@) > o) + <—jk<xk+1 ) — xk+1> . (32)

On the other hand, we have
* (12 __ * 12 2 *
17 = llog — 2*1° = [z — Tpsall” + 2(Tht1 — Tp, D1 — 29)

< ||zg — ac*H2 +2(xp1 — Tp, X1 — XY, (33)

|Tpyr — o

where the first identity follows from simple algebraic manipulations ||z — 2*||? = ||z} — g1 +

Tpr1— 2% = ||log —zp1 |? = 2(xrs1 — 2k, Tho1 — ) + || 2Re1 — %], and the second inequality
drops a nonnegative term ||z — x541||>. Combining (33) with (32) leads to

ks = 21 <z — 2*|1* = 2ek(f (2a11) = f(2)) (34)

which is the same as (11). The rest of the proof follows from a standard telescope argument. Let x*

be a minimizer. Summing (34) fort = 0, ...,k — 1, we have a telescope sum as follows
k—1 = 1
a(f(@rer) = f@) < 5 D (= 2 = wegr = 2*|%) < Sl — 27|1%
t=0 t=0
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Considering the fact that the function values { f(z) }x>0 are nonincreasing, we deduce that

el
=
o
—

(f(zr) = (@) p_a < ) alflz) — f(27) < %Ilévo — ¥,

t t

Il
o
Il
o

Dividing both sides by Zf;ol ¢; and taking z* as the closed point to z( in S (since z* can be any
minimizer), we get the desired inequality in (10). Finally, we show that the sequence of iterates
{zk }rx>0 converges to a minimizer. From (11), we know {||z}, — *|| }x>0 is nonincreasing and the
sequence {zy },>o is bounded. Hence, the sequence {x, }1>¢ has at least one accumulation point Z.
Due to the convergence of f(xy), we know that  must be a minimizer, i.e., f(Z) = f*and z € S.
We let 2* = Z in (11). This implies that ||z — Z|| is nonincreasing and bounded by an infimum 0,
thus limy_, ||zx — Z|| = 0, i.e., the whole sequence of iterates ) converge to T asymptotically.

D.2. A compelete proof for Theorem 4.2

To finish the proof for (12b) with coefficient 6, < 1/4/u2/ci + 1. We first review a crucial but
standard result about the proximal mapping.

Lemma 3 ((Leventhal, 2009, Equation 3.1)) For any c; > 0 in (9), the following holds true
dist*(zx, §) 2 zkr1 — Ws(zn)|? + llog — 2 |*. (35)
Proof As shown in Rockafellar (2021), the proximal point operator for a convex function f : R™ —

R with « > 0 is firmly nonexpensive, i.e.,

I

[prox,, (@) — prox,, ;(y)|I* < (x — Y, prox,, ¢(x) — proxa,f(y)> , Vz,yeR".  (36)

For notational convenience, let P(z) := prox,, (). We have

lz = yl* = | P(x) + (2 = P(x)) = (P(y) + (y = P(y)))|
= ||P(z) = P(y) + (z = P(z)) — (y = P(y))|I
= [P(z) = PW)I* + ll(z — P(x)) = (y — P())|
+2(P(z) = P(y), (x = P(z)) = (y = P(y)))

> ||P(z) = P(y)|* + |I(z = P(x)) = (y = P(y))|,

where the last inequality comes from the fact that the inner product is nonnegative by (36).
Setting © = x, and y = Ig(zy), we have x4 = P(zy), and y = P(y), which leads to the
desired result in (35). |

—

With Lemma 3, it follows that

dist® (w441, 5) < [lwgr1 — Ms(ap) |
< lex = Ts(p)l” — llox — 24 ])?
< dist®(wy, 5) — czdist*(0, 8 (wx41))
2
. Cr .
< dist?(xy, S) — M—’;dlst(xkﬂ, S),

e
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where the second inequality is from (35), the third inequality comes from (13), and the last inequal-
ity uses (EB). Rearranging terms, we have

2
. H .
dist?(xp41,5) < T lestQ(xk,S’).
Cp + Mg

Taking a square root yields the desired result.

D.3. Weakly convex extension

The linear convergence result in Theorem 4.2 can be extended to the class of p-weakly convex
functions with proper initialization when the regularity conditions in Theorem 3.1 hold. As shown
in theorem below, the coefficient {cy } is implicitly related to the weakly convex constant p.

Theorem D.1 (Extension to weakly convex function) Suppose the function f in (7) is p-weakly
convex. Let S be the solution set of (7) and assume S # (. Suppose f satisfies (QG) with pq >
g > 0 over the sublevel set [f < f* + v] with v > 0. The iterates generated by the PPM (9) with
any positive sequence {cy} satisfying é > p,Vk > 1, and initialization xo € [f < f* + v] satisfy
(12a) and (12b) with constants

1
<1, whereB:,uq—£>O.

1
\/QCkﬁ—Fl \/'ug/ci_l_l 2

Wk <1 and min

T2 + pCk

Proof The proof of the linear decrease in the cost value gap is identical to that in Theorem 4.2. As
fq > g, (EB), (RSI), and (PL) also hold by Theorem 3.1. For the proof of the linear decrease in
the distance , the coefficient \/ﬁ follows the same argument as in the convex case since cy
is chosen such that 1/c; > p so that the function f(x) + in — x]|? is a convex function plus
a quadratic term and the proximal mapping is still firmly inexpensive; For the coefficient

I
. . . e V2541
the argument is essential the same as the convex case with a small modification that the subproblem

is (i — p)-strongly convex. |

Appendix E. Convergence proofs for the inexact PPM in Section 5
E.1. Proofs for Theorem 5.2

The optimality condition of (16) and criteria (A’) implies that there exist vy € Of(xjy1) and 6y €
R™ such that

Tpy1 — T + O
0=0vp+ —— ||0k]] < &
Ch
Following the same argument in Appendix D.1, we can get a similar version of (11) as

[zpsr — ¥ < o — 2*||° — 2e(f(zrpr) — F(2*)) + 26 ]|z* — 2psa .
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This improvement holds for all £ > 0. Taking a sum of the above inequality from 0 to k — 1, we get

k—1 k-1
o =P < llwo — 2% =23 ei(f (@) = F(@) + D 261" — |
j=0 7=0
k-1 k—1 k—1
— 23 ¢ min flag) = [(07) 23 ¢i(f(2j1) = f(@7) < llag 2"+ 2D e
§=0 e j=0 J=0

Dividing both sides by 2 Z _0 cj and letting 2* = TIg(z°) gets the desired inequality. The conver-
gence of the iterate {xz} and the boundedness of the diameter D is guaranteed by Theorem 5.1.

Remark 2 Theorem 5.2 provides a convergence guarantee for the best iterate as opposed to that
for the last iterate in Theorem 4.1. The guarantee for the average Tj, = % Zle x; or the weighted

k=1 ..
Zj:o CjTj+1

average Ty = can also be shown using the inequality

Sizo
k k k—1
S ;2 zlfg 2]:0 Flegn) — )
and
1 k—1
f(@y) - fF < m jgocj(f(xj—kl) - f).

The proof in Theorem 5.2 borrows some proof idea from (Lu and Yang, 2023, Theorem 3) with the
fact that (A') implies the existence of 0y, € R™ such that dist(0, H(xk11)) = ||0k||/ck < €.

E.2. Proofs for (19)

We here discuss some details for the useful inequality (19). Since this inequality plays an important
role in the proof of Theorem 5.3, we put it into a lemma below.

Lemma 4 (Inexact one-step improvement (Luque, 1984, Equation 2.7)) Ler S be the solution
set of (7) and assume S # (). Let {x} be any sequence generated by the inexact PPM (16) under

(B) with parameters {Ck:}k>0 bounded away from zero. Then there exists a k > 0 such that k
satisfies 0, < 1,Vk > k and

(1 — o )dist(zg41, S) < 20k dist(zy, S) + dist(prox,, ¢(wx),S), Vk > k, 37)
Proof Fix a x € R™. From the update (9), we know
1 2 1 2
F(pros, 1 (@) + 5 [pro, () = < f(11s(@) + 5-[1s(x) =

1 1
= EHPYOX%J(JT) —z||? < f* = fprox,, ;(x)) + @HHS(SU) — z|?

= |prox,, ((r) — | < dist(x, S),
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where the last implication is due to f* — f(prox,, ¢(z)) < 0. On the other hand, using triangle
inequality, the nonexpensiveness of projection onto a convex set, and the above inequality, we have

Ve € R", [lo — s(prox,, ;(@))|| < [lz - s(z)[| + [[TLs () — Ms(prox, ,(z))]
< dist(z, S) + ||z — prox,, ¢(z)||
< 2dist(z, S). (38)

Also,
|21 — Tls(prox,, ¢(z))]l
< k1 — prox,, ¢(zk) | + [[prox,, r(zx) — Ms(prox,, r(z))ll
< Opllwpr — @xl| + dist(prox,, ¢(z),S)
< Ogllwkr1 — Ms(prox,, (@)l + dkllex — Ms(prox,, (x))| + dist(prox,, ,(vx),S),

where the second inequality is from the stopping criterion (B). As dr — 0, choosing k such that
0r < 1,Vk > k, we have

(1= d)l[wrsr — Ms(prox,, ;(2))|| < Okllex — Is(prox,, ;(x))[| + dist(prox,, ;(z),5).

Finally, using the fact dist(zg1, S) < |[zk+1 — Hs(prox,, ¢(x))| and (38) for = z; completes
the proof. |

Appendix F. Details of numerical experiments

In Section 6, we consider three applications of convex optimization in machine learning and signal
processing, including linear support vector machine (SVM) (Zhang and Lin (2015)), Lasso (Tibshi-
rani (1996)), and Elastic-Net (Zou and Hastie (2005)). The problem formulations are listed as

e Linear SVM:

1 — P
in  — 0,1 —bi(a] =z
min  — ;_1 max{0,1 - bi(a; 2)} + |,

where p > 0,a; € R4, b; € {—1,1},i=1,...,n.

* Lasso (¢;-regularization):

1
in  —|ly— Az|]® + )
min - Slly — Azf” + Allzs,

where A € R™™™ y € R™ and A > 0.
 Elastic-Net ({1 — E%—regularization):
min [y — Az|2 + Azl + 2|2
reR™ 2 2

where A € R™*™ ¢y € R™, and A, u > 0.
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For linear SVM, we consider three datasets (“ala”, “Australian”, “fourclass”) from Chang and Lin
(2011). The regularization term is set as p = 1. The step size parameter of the PPM is chosen as
¢ = 1 for all kK > 1. For Lasso, we randomly generate A € R™*™ and & € R™ with s elements
being zero (s < m), then construct the vector y = Az. We consider problems with three different
sizes: (n = 10,m = 40,s = 5), (n = 20, m = 50, s = 10), and (n = 30, m = 60,s = 15). The
regularization terms are set as p = 10. The step size parameter of the PPM is chosen as c;, = 0.16
for all £k > 1. For Elastic-Net, we consider the same data in Lasso with the regularization terms
p=10and p = 1.

We use the modeling package Yalmip (Lofberg, 2004) to formulate the subproblem (9) and call
the conic solver Mosek (ApS, 2019) to solve it. Our code is available at

https://github.com/soc—-ucsd/PPM_examples
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