A Bundle-based Augmented Lagrangian Framework: Algorithm, Convergence, and Primal-dual Principles

Feng-Yi Liao

Joint work with Yang Zheng

ECE department, UC San Diego Scalable Optimization and Control (SOC) Lab

> ICCOPT 2025, Los angeles, USA July 22, 2025

Outline

- Introduction
- 2 Bundle-based Augmented Lagrangian Framework
- 3 Convergence
- 4 Numerical results
- 6 Conclusion

Introduction

Consider the following constrained convex optimization problem:

$$p^* := \min_{x \in \mathbb{R}^n} \quad \langle c, x \rangle$$
subject to $\mathcal{A}x = b$, (P)
$$x \in \Omega,$$

where $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, $A : \mathbb{R}^n \to \mathbb{R}^m$ is a linear map, and $\Omega \subseteq \mathbb{R}^n$ is a compact convex set.

Applications

Semidefinite programs

$$\min_{X\in\mathbb{S}^n}\{\langle C,X\rangle\mid \mathcal{A}X=b,X\in\Omega\},$$

where $\Omega = \{X \in \mathbb{S}^n_+ : \operatorname{tr}(X) \leq \gamma\}$, where γ is large enough.

Max-Cut

$$\min_{X \in \mathbb{S}^n} \{ \langle L, X \rangle \mid X_{ii} = 1, i = 1, \dots, n, X \in \mathbb{S}^n_+ \}.$$

Augmented Lagrangian methods

- A conceptually simple framework for constrained optimization (Rockafellar 1976; Hestenes 1969; Powell 1969)
- Define the augmented Lagrangian function $\mathcal{L}(x,y)$ with $\rho > 0$

$$\mathcal{L}_{\rho}(x,y) = \langle c, x \rangle + \langle y, b - \mathcal{A}x \rangle + \frac{\rho}{2} \|b - \mathcal{A}x\|^2.$$

• For iterations $k = 1, 2, \ldots$, the augmented Lagrangian method (ALM) repeats the two steps

$$x_{k+1} \in \underset{x \in \Omega}{\operatorname{argmin}} \ \mathcal{L}_{\rho}(x, y_k),$$
 (1a)

$$y_{k+1} = y_k + \rho(b - Ax_{k+1}).$$
 (1b)

The minimization in (1a) is difficult. Often consider the inexact ALM (Rockafellar 1976):

$$x_{k+1} pprox \operatorname*{argmin}_{x \in \Omega} \mathcal{L}_{\rho}(x, y_k),$$

 $y_{k+1} = y_k + \rho(b - \mathcal{A}x_{k+1}).$

Proximal point methods

- The ALM is the same as the proximal point method applied to the dual (Rockafellar 1976)
- **Proximal point method (PPM):** Consider $\min_{y \in \mathbb{R}^n} f(y)$, where f is a convex function. For iterations $k = 1, 2, \ldots$, the PPM performs the proximal update

$$y_{k+1} = \operatorname{prox}_{\alpha f}(y_k), \quad k = 1, 2, \dots,$$

where $prox_{\alpha f}$ is the proximal mapping defined as

$$\operatorname{prox}_{\alpha f}(y_k) := \operatorname*{argmin}_{y \in \mathbb{R}^n} \left. f(y) + \frac{1}{2\alpha} \left\| y - y_k \right\|^2.$$

However, the proximal update is difficult to evaluate. Often consider inexact PPM

$$y_{k+1} \approx \operatorname{prox}_{\alpha f}(y_k).$$

 The proximal bundle method can be viewed as an efficient realization of the inexact PPM (Liang and Monteiro 2021)

Proximal bundle methods

- The difficulty of the proximal operator $prox_{\alpha f}(y_k)$ comes from the function f
- Approximate f by a simplier lower approximation f_k (i.e., $f_k \leq f$) (Lemarechal and Zowe 1994; Liang and Monteiro 2021; Kiwiel 2000)
- Acquire a candidate point z_{k+1} by

$$z_{k+1} = \operatorname{prox}_{\alpha f_k}(y_k)$$

• Test if z_{k+1} provides sufficient descent by the test

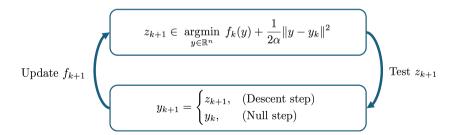
$$f(z_{k+1}) \le f(y_k) - \beta \underbrace{(f(y_k) - f_k(z_{k+1}))}_{\text{Approximated drop}}, \text{ where } \beta \in (0,1) \text{ is fixed.}$$
 (2)

Update the iterate

$$y_{k+1} = \begin{cases} z_{k+1}, & \text{if (2) holds (Descent step)} \\ y_k, & \text{otherwise (Null step)}. \end{cases}$$

Proximal bundle methods

- Update the approximation f_{k+1} satisfying (Díaz and Grimmer 2023)
 - Lower approximation: $f_{k+1} \leq f$.
 - **Subgradient:** There exists $v_{k+1} \in \partial f(z_{k+1})$ s.t. $f_{k+1}(\cdot) \geq f(z_{k+1}) + \langle v_{k+1}, \cdot z_{k+1} \rangle$.
 - **Aggregation:** For a null step, we require $f_{k+1}(\cdot) \ge f_k(z_{k+1}) + \langle s_{k+1}, \cdot z_{k+1} \rangle$, where $s_{k+1} = (y_k z_{k+1})/\alpha \in \partial f_k(z_{k+1})$.



Big Picture: Primal and Dual Perspective

$y_{k+1} = \operatorname{prox}_{o\sigma}(y_k)$

PPM

 \Leftrightarrow

Inexact PPM

Proximal bundle

method

8 / 28

 $z_{k+1} = \operatorname{prox}_{\varrho \mathbf{g}_{k}}(y_{k})$

 $V_{k+1} = Z_{k+1}$ or V_k

Big Picture: Primal and Dual Perspective

• Let
$$g(y) = -\min_{x \in \Omega} \mathcal{L}(x, y)$$
 be the dual function and $\mathcal{L}(x, y) = \langle c, x \rangle + \langle y, b - \mathcal{A}x \rangle$.

Primal

Dual

$$\min_{x \in \mathbb{R}^n} \{\langle c, x \rangle \mid \mathcal{A}x = b, x \in \Omega\}.$$

$$\min_{y \in \mathbb{R}^m} g(y).$$

ALM

$$\lim_{x \in \mathbb{R}^n} \mathcal{L}_{\rho}(x, y_k),$$

$$\lim_{x \in \Omega} y_{k+1} = \operatorname{prox}_{\rho g}(y_k)$$

$$\lim_{x \in \Omega} y_{k+1} = \operatorname{prox}_{\rho g}(y_k)$$

Inexact ALM

$$\lim_{x \in \Omega} \mathcal{L}_{\rho}(x, y_k),$$

$$\lim_{x \in \Omega} y_{k+1} = \operatorname{prox}_{\rho g}(y_k)$$

Inexact ALM

$$\lim_{x \in \Omega} y_{k+1} = y_k + \rho(b - \mathcal{A}x_{k+1}).$$

This work

 \Leftrightarrow

 $y_{k+1} = \operatorname{prox}_{o\sigma}(y_k)$

 $z_{k+1} = \operatorname{prox}_{\varrho \mathbf{g}_k}(y_k)$

 $y_{k+1} = z_{k+1}$ or y_k

PPM

Inexact PPM

Proximal bundle

method

This work: A Bundle-based Augmented Lagrangian Framework

Contribution 1: A new Bundle-based Augmented Lagrangian Algorithm (BALA):

$$w_{k+1} \in \underset{x \in \Omega_k}{\operatorname{argmin}} \mathcal{L}_{\rho}(x, y_k),$$

$$z_{k+1} = y_k + \rho(b - \mathcal{A}w_{k+1})$$

$$(x_{k+1}, y_{k+1}) = \begin{cases} (w_{k+1}, z_{k+1}), & (\text{Descent step}), \\ (x_k, y_k), & (\text{Null step}). \end{cases}$$
Test (w_{k+1}, z_{k+1})

Contribution 2: Sublinear convergence: Under the proper choice of the parameters, for any $\epsilon > 0$, BALA finds a pair of primal and dual solutions (x_k, y_k) satisfying

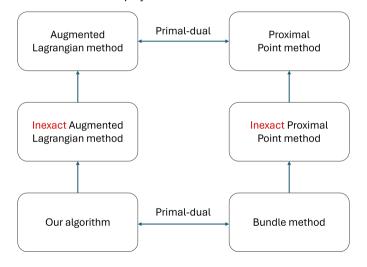
$$\max\{|\langle c, x_k \rangle - p^{\star}|, \|\mathcal{A}x_k - b\|, g(y_k) - g^{\star}\} \leq \epsilon$$

in at most $\mathcal{O}(\epsilon^{-2})$ iterations.

Contribution 3: Linear convergence: Under mild assumptions, the complexity becomes $\mathcal{O}(\log(\frac{1}{\epsilon}))$.

This work: A Bundle-based Augmented Lagrangian Framework

Contribution 4: Primal and dual interplay



Outline

- Introduction
- 2 Bundle-based Augmented Lagrangian Framework
- 3 Convergence
- 4 Numerical results
- 6 Conclusion

Under the inexact ALM framework

$$x_{k+1} \approx \underset{x \in \Omega}{\operatorname{argmin}} \ \mathcal{L}_{\rho}(x, y_k),$$

 $y_{k+1} = y_k + \rho(b - \mathcal{A}x_{k+1}).$

How to solve the minimization efficiently?

- The fact that the minimization is difficult is due to the constraint $x \in \Omega$
- What if we approximate the set Ω by a **simple** inner approximation Ω_k , i.e.,

$$\Omega_k \subseteq \Omega$$
,

and solve the simpler subproblem exactly

$$w_{k+1} \in \operatorname*{argmin}_{x \in \Omega_k} \, \mathcal{L}_{\rho}(x, y_k)$$

• For example, $\Omega_k = \operatorname{conv}(v_k, w_k)$ where $v_k, w_k \in \Omega$. An analytical solution exists.

Challenges of the proposal $w_{k+1} \in \operatorname{argmin}_{x \in \Omega_k} \mathcal{L}_{\rho}(x, y_k)$

- How to decide w_{k+1} is a good solution?
- In general, it is difficult to relate w_{k+1} with the true solution $\operatorname{argmin}_{x \in \Omega} \mathcal{L}_{\rho}(x, y_k)$.

Potential solutions

- A very good approximation $\Omega_k \subseteq \Omega$, i.e., $\Omega_k \approx \Omega$
- However, a good approximation Ω_k leads to a **harder** subproblem

We aim to design a sequence of inner approximation $\{\Omega_k\}$ such that the sequence

$$\{w_{k+1} \in \operatorname*{argmin}_{x \in \Omega_k} \mathcal{L}_{\rho}(x, y_k)\}$$

- finds an ϵ_k -solution to argmin_{$x \in \Omega$} $\mathcal{L}_{\rho}(x, y_k)$;
- the sequence of sets do not need to **be nested** $\Omega_k \not\subseteq \Omega_{k+1}$

Decide if w_{k+1} is a good candidate:

Idea: Look at the descent generated by $z_{k+1} = y_k + \rho(b - Aw_{k+1})$ in the dual.

• An inner approximation $\Omega_k \subseteq \Omega$ naturally defines an **approximated** dual function g_k :

$$g_k(y) := -\min_{\mathbf{x} \in \Omega_k} \mathcal{L}(\mathbf{x}, y) \leq g(y), \quad \forall y \in \mathbb{R}^m,$$

where g is the dual function.

Test the descent progress

$$g(z_{k+1}) \le g(y_k) - \beta \underbrace{\left(g(y_k) - g_k(z_{k+1})\right)}_{\text{Approximated drop}}, \text{ where } \beta \in (0,1) \text{ is fixed.}$$
 (3)

Update the iterate

$$(x_{k+1}, y_{k+1}) = \begin{cases} (w_{k+1}, z_{k+1}), & \text{if (3) holds (descent step)}, \\ (x_k, y_k), & \text{otherwise (null step)}. \end{cases}$$

Update the inner approximation Ω_{k+1} :

- Inner approximation: we have $\Omega_{k+1} \subseteq \Omega$ closed and convex;
- **Dual information:** we require $v_{k+1} \in \Omega_{k+1}$, where $v_{k+1} \in \Omega$ satisfies

$$g(z_{k+1}) = -\mathcal{L}(v_{k+1}, y_k)$$
 or equivalently $v_{k+1} \in \operatorname*{argmin}_{x \in \Omega} \mathcal{L}(x, z_{k+1});$

• **Primal information:** if the step k is a null step, then we require $w_{k+1} \in \Omega_{k+1}$.

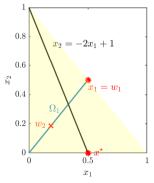
$$w_{k+1} \in \underset{x \in \Omega_k}{\operatorname{argmin}} \mathcal{L}_{\rho}(x, y_k),$$

$$z_{k+1} = y_k + \rho(b - \mathcal{A}w_{k+1})$$
Update Ω_{k+1}

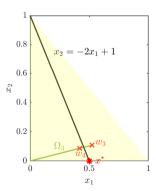
$$(x_{k+1}, y_{k+1}) = \begin{cases} (w_{k+1}, z_{k+1}), & \text{(Descent step)}, \\ (x_k, y_k), & \text{(Null step)}. \end{cases}$$

Illustration in 2 dimensions

$$\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^2} & x_1 + x_2 \\ \text{subject to} & 2x_1 + x_2 = 1, \\ & x \in \mathbb{R}^2_+, |x|_1 \leq 1. \end{aligned}$$







BALA and proximal bundle methods

Subproblem in BALA

$$w_{k+1} \in \operatorname*{argmin}_{x \in \Omega_k} \, \mathcal{L}_{
ho}(x,y_k), \quad z_{k+1} = y_k +
ho(b - \mathcal{A}x_{k+1}).$$

(Lemma) The dual update z_{k+1} is the same as a proximal step on the approximated dual function, i.e.,

$$z_{k+1} = \min_{y \in \mathbb{R}^m} g_k(y) + \frac{1}{2\rho} ||y - y_k||^2,$$

where $g_k = -\min_{x \in \Omega_k} \mathcal{L}(x, \cdot)$ an approximated dual function of g.

(Lemma) The construction of Ω_{k+1} implies that the function $g_{k+1} = -\min_{x \in \Omega_{k+1}} \mathcal{L}(x, \cdot)$ satisfies the assumptions for the proximal bundle method.

BALA can be viewed as a proximal bundle method applied to the dual.

Outline

- Introduction
- 2 Bundle-based Augmented Lagrangian Framework
- 3 Convergence
- 4 Numerical results
- 6 Conclusion

Convergence

Theorem 1 (Sublinear convergences)

For any $\epsilon > 0$, BALA with parameters $\beta \in (0,1)$ and $\rho > 0$ finds a dual iterate y_k satisfying

$$g(y_k) - g^* \le \epsilon$$

in at most $\mathcal{O}\left(\epsilon^{-3}\right)$ number of iterations, and a primal iterate x_k satisfying

$$|\langle c, x_k \rangle - p^*| \le \epsilon \text{ and } ||Ax_k - b|| \le \epsilon$$

in at most $\mathcal{O}\left(\epsilon^{-6}\right)$ number of iterations. Moreover, if we choose $\rho=1/\epsilon$, then the iteration complexities are improved to $\mathcal{O}(\epsilon^{-2})$ for both the primal and dual iterates, respectively.

Convergence

Theorem 2 ((Local) Linear convergences)

Suppose that the dual function g satisfies quadratic growth

$$g(y) - g^* \ge \frac{\alpha}{2} \cdot \operatorname{dist}^2(y, \Omega_{\mathrm{D}}), \quad \forall y \in \mathbb{R}^m$$
 (4)

and the approximation function g_k satisfies

$$g_k(y) \le g(y) \le g_k(y) + \frac{\gamma}{2} \|y - y_k\|^2, \ \forall y \in \mathbb{R}^m, \tag{5}$$

for all $k \ge T$ with $\gamma > 0$. Under a proper choice of parameters, for all iterations $k \ge T$, there exists two constants $\mu_1 \in (0,1), \mu_2 > 0$ such that

$$\operatorname{dist}(y_{k+1},\Omega_{\mathrm{D}}) \leq \mu_1 \cdot \operatorname{dist}(y_k,\Omega_{\mathrm{D}})$$

and

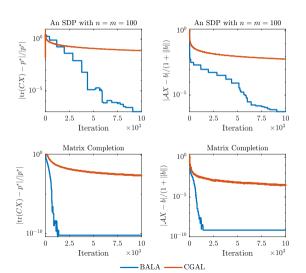
$$\max\{g(y_k)-g^{\star},\|\mathcal{A}x_k-b\|^2,|\langle c,x_k\rangle-p^{\star}|^2\}\leq \mu_2\cdot \mathrm{dist}(y_k,\Omega_{\mathrm{D}}).$$

Outline

- Introduction
- 2 Bundle-based Augmented Lagrangian Framework
- 3 Convergence
- 4 Numerical results
- 6 Conclusion

Numerical results

Comparison with the algorithm CGAL in (Yurtsever, Fercoq, and Cevher 2019)



Numerical results

Comparison with the SCS (O'Donoghue 2021) and SDPNAL+ (Sun et al. 2020)

Instance	Metric	SCS	SDPNAL+	BALA	Instance	Metric	SCS	SDPNAL+	BALA
qpp100	$\epsilon_{ m p}$	9.6e-3	3.6e-4	2.5e-4	qpp250-1	$\epsilon_{ m p}$	2.4e-2	2.9e-4	3.6e-4
	$\epsilon_{ m d}$	$1.1\mathrm{e}{-4}$	3.1e-4	0		$\epsilon_{ m d}$	$3.4e{-4}$	$4.5e{-4}$	0
	$\epsilon_{ m g}$	$2.8e{-7}$	$3.2e{-4}$	$9.1e{-6}$		$\epsilon_{ m g}$	2e-5	5.4e-3	1.4e-5
	Cost	4.5e1	4.5e1	4.5e1		Cost	1.6e1	1.6e1	1.5e1
	Time(s)	1.1e1	$4.9\mathrm{e}{-1}$	1.6		Time(s)	1.2e2	1.1	5.1
qpp500-1	$\epsilon_{ m p}$	1.2e-2	2.6e-4	4.5e-4	qpG51	$\epsilon_{ m p}$	N/A	2.1e-4	2.3e-4
	$\epsilon_{ m d}$	$1.1\mathrm{e}{-4}$	3.5e-4	0		$\epsilon_{ m d}$	N/A	$1.6\mathrm{e}{-5}$	0
	$\epsilon_{ m g}$	7.7e-5	$5.4e{-3}$	1.1e-4		$\epsilon_{ m g}$	N/A	$4.8e{-5}$	$2.1e{-5}$
	Cost	4.5e1	4.5e1	4.5e1		Cost	N/A	-1.2e4	1.2e4
	Time(s)	1.0e2	7.5	1.1e1		Time(s)	36e1	6.1e2	1.2e2

$$\epsilon_{\mathrm{p}} = \frac{\|\mathcal{A}x - b\|}{1 + \|b\|}, \quad \epsilon_{\mathrm{d}} = \frac{\|\mathcal{C} - \mathcal{A}^*y - Z\|}{1 + \|\mathcal{C}\|}, \quad \text{and} \quad \epsilon_{\mathrm{g}} = \frac{|\langle \mathcal{C}, X \rangle - \langle b, y \rangle|}{1 + |\langle \mathcal{C}, X \rangle| + |\langle b, y \rangle|}.$$

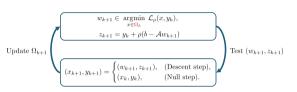
• Solved until max $\{\epsilon_{\rm p},\epsilon_{\rm d},\epsilon_{\rm g}\} \leq 5 imes 10^{-4}$

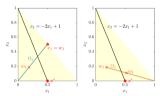
Outline

- Introduction
- 2 Bundle-based Augmented Lagrangian Framework
- 3 Convergence
- 4 Numerical results
- 6 Conclusion

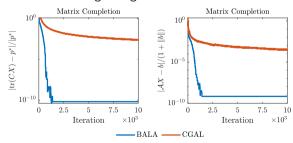
Conclusion

• A new <u>Bundle-based Augmented Lagrangian Algorithm</u> (BALA):



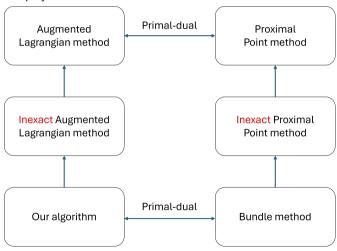


• BALA has sublinear and linear convergence guarantees



Conclusion

Primal and dual interplay



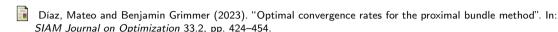
Thank you for your attention!

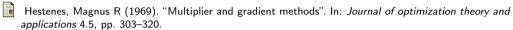
Q & A

• Feng-Yi Liao and Yang Zheng (2025). "A Bundle-based Augmented Lagrangian Framework: Algorithm, Convergence, and Primal-dual Principles". In: arXiv preprint arXiv:2502.08835

Supported by NSF ECCS 2154650, NSF CMMI 2320697, and NSF CAREER 2340713.

References I





Kiwiel, Krzysztof C (2000). "Efficiency of proximal bundle methods". In: *Journal of Optimization Theory and Applications* 104, pp. 589–603.

Lemarechal, Claude and Jochem Zowe (1994). "A condensed introduction to bundle methods in nonsmooth optimization". In: Algorithms for continuous optimization: the state of the art. Springer, pp. 357–382.

Liang, Jiaming and Renato DC Monteiro (2021). "A proximal bundle variant with optimal iteration-complexity for a large range of prox stepsizes". In: SIAM Journal on Optimization 31.4, pp. 2955–2986.

Liao, Feng-Yi and Yang Zheng (2025). "A Bundle-based Augmented Lagrangian Framework: Algorithm, Convergence, and Primal-dual Principles". In: arXiv preprint arXiv:2502.08835.

O'Donoghue, Brendan (Aug. 2021). "Operator Splitting for a Homogeneous Embedding of the Linear Complementarity Problem". In: SIAM Journal on Optimization 31 (3), pp. 1999–2023.

Powell, Michael JD (1969). "A method for nonlinear constraints in minimization problems". In: *Optimization*, pp. 283–298.

References II

Rockafellar, R Tyrrell (1976). "Augmented Lagrangians and applications of the proximal point algorithm in convex programming". In: *Mathematics of operations research* 1.2, pp. 97–116.

Sun, Defeng et al. (2020). "SDPNAL+: A Matlab software for semidefinite programming with bound constraints (version 1.0)". In: *Optimization Methods and Software* 35.1, pp. 87–115.

Yurtsever, Alp, Olivier Fercoq, and Volkan Cevher (2019). "A conditional-gradient-based augmented Lagrangian framework". In: *International Conference on Machine Learning*. PMLR, pp. 7272–7281.