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Introduction

• Consider the following constrained convex optimization problem:

p⋆ := min
x∈Rn

⟨c , x⟩

subject to Ax = b,

x ∈ Ω,

(P)

where b ∈ Rm, c ∈ Rn, A : Rn → Rm is a linear map, and Ω ⊆ Rn is a compact convex set.
Applications
• Semidefinite programs

min
X∈Sn

{⟨C ,X ⟩ | AX = b,X ∈ Ω},

where Ω = {X ∈ Sn+ : tr(X ) ≤ γ}, where γ is large enough.
• Max-Cut

min
X∈Sn

{⟨L,X ⟩ | Xii = 1, i = 1, . . . , n,X ∈ Sn+}.
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Augmented Lagrangian methods

• A conceptually simple framework for constrained optimization
(Rockafellar 1976; Hestenes 1969; Powell 1969)

• Define the augmented Lagrangian function L(x , y) with ρ > 0

Lρ(x , y) = ⟨c , x⟩+ ⟨y , b −Ax⟩+ ρ

2
∥b −Ax∥2.

• For iterations k = 1, 2, . . . , the augmented Lagrangian method (ALM) repeats the two steps

xk+1 ∈ argmin
x∈Ω

Lρ(x , yk), (1a)

yk+1 = yk + ρ(b −Axk+1). (1b)

• The minimization in (1a) is difficult. Often consider the inexact ALM (Rockafellar 1976):

xk+1 ≈ argmin
x∈Ω

Lρ(x , yk),

yk+1 = yk + ρ(b −Axk+1).
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Proximal point methods

• The ALM is the same as the proximal point method applied to the dual (Rockafellar 1976)
• Proximal point method (PPM): Consider miny∈Rn f (y), where f is a convex function. For

iterations k = 1, 2, . . . , the PPM performs the proximal update

yk+1 = proxαf (yk), k = 1, 2, . . . ,

where proxαf is the proximal mapping defined as

proxαf (yk) := argmin
y∈Rn

f (y) +
1
2α

∥y − yk∥2
.

• However, the proximal update is difficult to evaluate. Often consider inexact PPM

yk+1 ≈ proxαf (yk).

• The proximal bundle method can be viewed as an efficient realization of the inexact PPM
(Liang and Monteiro 2021)
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Proximal bundle methods

• The difficulty of the proximal operator proxαf (yk) comes from the function f

• Approximate f by a simplier lower approximation fk (i.e., fk ≤ f )
(Lemarechal and Zowe 1994; Liang and Monteiro 2021; Kiwiel 2000)

• Acquire a candidate point zk+1 by

zk+1 = proxαfk (yk)

• Test if zk+1 provides sufficient descent by the test

f (zk+1) ≤ f (yk)− β (f (yk)− fk(zk+1))︸ ︷︷ ︸
Approximated drop

, where β ∈ (0, 1) is fixed. (2)

• Update the iterate

yk+1 =

{
zk+1, if (2) holds (Descent step)
yk , otherwise (Null step).
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Proximal bundle methods

• Update the approximation fk+1 satisfying (Díaz and Grimmer 2023)
• Lower approximation: fk+1 ≤ f .

• Subgradient: There exists vk+1 ∈ ∂f (zk+1) s.t. fk+1(·) ≥ f (zk+1) + ⟨vk+1, · − zk+1⟩.
• Aggregation: For a null step, we require fk+1(·) ≥ fk(zk+1) + ⟨sk+1, · − zk+1⟩ , where
sk+1 = (yk − zk+1)/α ∈ ∂fk(zk+1).
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Big Picture: Primal and Dual Perspective

• Let g(y) = −minx∈Ω L(x , y) be the dual function and L(x , y) = ⟨c , x⟩+ ⟨y , b −Ax⟩.
Primal Dual

min
x∈Rn

{⟨c , x⟩ | Ax = b, x ∈ Ω}. min
y∈Rm

g(y).

ALM
xk+1 ∈ argmin

x∈Ω
Lρ(x , yk),

yk+1 = yk + ρ(b −Axk+1).

⇔ yk+1 = proxρg (yk) PPM

⇑ ⇑

Inexact ALM
xk+1 ≈ argmin

x∈Ω
Lρ(x , yk),

yk+1 = yk + ρ(b −Axk+1).
yk+1 ≈ proxρg (yk) Inexact PPM

⇑ ⇑

? ⇔
zk+1 = proxρgk (yk)

yk+1 = zk+1 or yk

Proximal bundle
method
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This work: A Bundle-based Augmented Lagrangian Framework

Contribution 1: A new Bundle-based Augmented Lagrangian Algorithm (BALA):

Contribution 2: Sublinear convergence: Under the proper choice of the parameters, for any ϵ > 0,
BALA finds a pair of primal and dual solutions (xk , yk) satisfying

max{| ⟨c , xk⟩ − p⋆|, ∥Axk − b∥, g(yk)− g⋆} ≤ ϵ

in at most O(ϵ−2) iterations.
Contribution 3: Linear convergence: Under mild assumptions, the complexity becomes O(log( 1

ϵ )).
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This work: A Bundle-based Augmented Lagrangian Framework

Contribution 4: Primal and dual interplay
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Bundle-based Augmented Lagrangian Framework

Under the inexact ALM framework

xk+1 ≈ argmin
x∈Ω

Lρ(x , yk),

yk+1 = yk + ρ(b −Axk+1).

How to solve the minimization efficiently?
• The fact that the minimization is difficult is due to the constraint x ∈ Ω

• What if we approximate the set Ω by a simple inner approximation Ωk , i.e.,

Ωk ⊆ Ω,

and solve the simpler subproblem exactly

wk+1 ∈ argmin
x∈Ωk

Lρ(x , yk)

• For example, Ωk = conv(vk ,wk) where vk ,wk ∈ Ω. An analytical solution exists.
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Bundle-based Augmented Lagrangian Framework

Challenges of the proposal wk+1 ∈ argminx∈Ωk
Lρ(x , yk)

• How to decide wk+1 is a good solution?
• In general, it is difficult to relate wk+1 with the true solution argminx∈Ω Lρ(x , yk).

Potential solutions
• A very good approximation Ωk ⊆ Ω, i.e., Ωk ≈ Ω

• However, a good approximation Ωk leads to a harder subproblem

We aim to design a sequence of inner approximation {Ωk} such that the sequence

{wk+1 ∈ argmin
x∈Ωk

Lρ(x , yk)}

• finds an ϵk -solution to argminx∈Ω Lρ(x , yk) ;
• the sequence of sets do not need to be nested Ωk ̸⊆ Ωk+1
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Bundle-based Augmented Lagrangian Framework

Decide if wk+1 is a good candidate:

Idea: Look at the descent generated by zk+1 = yk + ρ(b −Awk+1) in the dual.

• An inner approximation Ωk ⊆ Ω naturally defines an approximated dual function gk :

gk(y) := − min
x∈Ωk

L(x , y) ≤ g(y), ∀y ∈ Rm,

where g is the dual function.
• Test the descent progress

g(zk+1) ≤ g(yk)− β (g(yk)− gk(zk+1))︸ ︷︷ ︸
Approximated drop

, where β ∈ (0, 1) is fixed. (3)

• Update the iterate

(xk+1, yk+1) =

{
(wk+1, zk+1), if (3) holds (descent step),
(xk , yk), otherwise (null step).
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Bundle-based Augmented Lagrangian Framework

Update the inner approximation Ωk+1:
• Inner approximation: we have Ωk+1 ⊆ Ω closed and convex;
• Dual information: we require vk+1 ∈ Ωk+1, where vk+1 ∈ Ω satisfies

g(zk+1) = −L(vk+1, yk) or equivalently vk+1 ∈ argmin
x∈Ω

L(x , zk+1);

• Primal information: if the step k is a null step, then we require wk+1 ∈ Ωk+1.
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Bundle-based Augmented Lagrangian Framework

Illustration in 2 dimensions
min
x∈R2

x1 + x2

subject to 2x1 + x2 = 1,

x ∈ R2
+, |x |1 ≤ 1.
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BALA and proximal bundle methods

Subproblem in BALA

wk+1 ∈ argmin
x∈Ωk

Lρ(x , yk), zk+1 = yk + ρ(b −Axk+1).

(Lemma) The dual update zk+1 is the same as a proximal step on the approximated dual
function, i.e.,

zk+1 = min
y∈Rm

gk(y) +
1
2ρ

∥y − yk∥2,

where gk = −minx∈Ωk
L(x , ·) an approximated dual function of g .

(Lemma) The construction of Ωk+1 implies that the function gk+1 = −minx∈Ωk+1 L(x , ·)
satisfies the assumptions for the proximal bundle method.

BALA can be viewed as a proximal bundle method applied to the dual.
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Convergence

Theorem 1 (Sublinear convergences)
For any ϵ > 0, BALA with parameters β ∈ (0, 1) and ρ > 0 finds a dual iterate yk satisfying

g(yk)− g⋆ ≤ ϵ

in at most O
(
ϵ−3

)
number of iterations, and a primal iterate xk satisfying

| ⟨c , xk⟩ − p⋆| ≤ ϵ and ∥Axk − b∥ ≤ ϵ

in at most O
(
ϵ−6

)
number of iterations. Moreover, if we choose ρ = 1/ϵ, then the iteration

complexities are improved to O(ϵ−2) for both the primal and dual iterates, respectively.
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Convergence

Theorem 2 ((Local) Linear convergences)
Suppose that the dual function g satisfies quadratic growth

g(y)− g⋆ ≥ α

2
· dist2(y ,ΩD), ∀y ∈ Rm (4)

and the approximation function gk satisfies

gk(y) ≤ g(y) ≤ gk(y) +
γ

2
∥y − yk∥2, ∀y ∈ Rm, (5)

for all k ≥ T with γ > 0. Under a proper choice of parameters, for all iterations k ≥ T , there
exists two constants µ1 ∈ (0, 1), µ2 > 0 such that

dist(yk+1,ΩD) ≤ µ1 · dist(yk ,ΩD)

and

max{g(yk)− g⋆, ∥Axk − b∥2, | ⟨c , xk⟩ − p⋆|2} ≤ µ2 · dist(yk ,ΩD).
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Numerical results

Comparison with the algorithm CGAL in (Yurtsever, Fercoq, and Cevher 2019)
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Numerical results

Comparison with the SCS (O’Donoghue 2021) and SDPNAL+ (Sun et al. 2020)

Instance Metric SCS SDPNAL+ BALA Instance Metric SCS SDPNAL+ BALA

qpp100

ϵp 9.6e−3 3.6e−4 2.5e−4

qpp250-1

ϵp 2.4e−2 2.9e−4 3.6e−4
ϵd 1.1e−4 3.1e−4 0 ϵd 3.4e−4 4.5e−4 0
ϵg 2.8e−7 3.2e−4 9.1e−6 ϵg 2e−5 5.4e−3 1.4e−5
Cost 4.5e1 4.5e1 4.5e1 Cost 1.6e1 1.6e1 1.5e1
Time(s) 1.1e1 4.9e−1 1.6 Time(s) 1.2e2 1.1 5.1

qpp500-1

ϵp 1.2e−2 2.6e−4 4.5e−4

qpG51

ϵp N/A 2.1e−4 2.3e−4
ϵd 1.1e−4 3.5e−4 0 ϵd N/A 1.6e−5 0
ϵg 7.7e−5 5.4e−3 1.1e−4 ϵg N/A 4.8e−5 2.1e−5
Cost 4.5e1 4.5e1 4.5e1 Cost N/A −1.2e4 1.2e4
Time(s) 1.0e2 7.5 1.1e1 Time(s) 36e1 6.1e2 1.2e2

ϵp =
∥Ax − b∥
1 + ∥b∥

, ϵd =
∥C −A∗y − Z∥

1 + ∥C∥
, and ϵg =

|⟨C ,X ⟩ − ⟨b, y⟩|
1 + |⟨C ,X ⟩|+ |⟨b, y⟩|

.

• Solved until max{ϵp, ϵd, ϵg} ≤ 5 × 10−4
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Conclusion

• A new Bundle-based Augmented Lagrangian Algorithm (BALA):

• BALA has sublinear and linear convergence guarantees
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Conclusion

• Primal and dual interplay
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